Unlearning Misalignment for Personalized LLM Adaptation via Instance-Response-Dependent Discrepancies Journal Submissions

Anonymous authors
Paper under double-blind review

Abstract

While Large Language Models (LLMs) have revolutionized chatbot interactions, they often fall short in aligning responses with the nuanced preferences of individual users—a challenge rooted in the inherently subjective and proprietary nature of user preferences. Consequently, prompt-based learning, though effective in enhancing factual accuracy due to its emphasis on universal correctness, remains insufficient for achieving accurate personalised response alignment. Because user preferences vary widely across individuals and contexts, aligning responses requires a more personalized and context-aware approach. To address this limitation, we propose Consistent Marginalization (CM)—a novel framework that aims to unlearn misalignment by constructing a personalised memory bank of instance-response-dependent discrepancies, built from a small set of user preference samples. This personalised memory bank equips LLMs with the ability to understand, recall, and adapt to individual preferences, enabling more consistent and personalized responses. Evaluated across a diverse range of domain-specific datasets and model architectures, CM yields notable improvements in response alignment and robustness. We believe Consistent Marginalization represents a valuable step toward enabling LLMs to become genuinely personable and adaptive conversational agents by understanding user preferences and generating responses that are better aligned with individual user expectations.

1 Introduction

Autoregressive large language models (LLMs) have recently achieved widespread adoption due to their remarkable performance across various domains (Brown et al., 2020; Touvron et al., 2023; OpenAI, 2023). These models are predominantly trained via next-token prediction objectives targeted at maximizing output accuracy (Devlin et al., 2018; Touvron et al., 2023; Hu et al., 2024). However, as LLMs become increasingly employed in personalized applications, requiring alignment with nuanced and individual user preferences, their outputs frequently diverge from anticipated or preferred responses Zhao et al. (2025). Such deviations often characterized as misaligned or undesired outputs, presenting substantial challenges in applications requiring adaptive and personalized supervision, including recommendation systems, personalized response generation, and text mining, where consistency, reliability, and alignment with individual expectations are critical Wu et al. (2024). While the effectiveness of LLMs is closely tied to the prompt strategies employed , serving as external guidance for self-correction (Brown et al., 2020; Wei et al., 2021; Yao et al., 2022; Liu et al., 2023)—these strategies are primarily designed to ensure **output accuracy**, rather than **personalized** response alignment. Figure 1 highlights two separate learning objectives: response alignment (how well an LLM reflects subjective, user-specific preferences) and output accuracy (the objective factual correctness of its content). Standard prompt-based learning (Figure 1a) optimizes for output accuracy but neglects instanceresponse independent and dependent discrepancies (a misalignment between user intent and model response) illustrated in Figures 1b and 1c. Ignoring these discrepancies leads to persistent misalignment, underscoring the need for mechanisms that can record, recall, and correct personalised response misalignment between the user and LLM. Aligning large language models (LLMs) to generate responses tailored to individual users is challenging because it requires understanding and incorporating user preferences. Unlike complex reasoning tasks, which are objective due to their basis in facts and definitive solutions, user preferences are inherently subjective, reflecting personal opinions and judgments (Hu et al., 2024). While supervised fine-tuning on comprehensive datasets can achieve such alignment, it is often costly, and many user-specific datasets are valuable only to the individual, limiting their applicability to the broader community and countries.

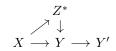
Given a user from a region that uses distinctive slang or localized expressions, it can be challenging for an LLM to accurately interpret their intent, especially when there is no prior knowledge of the user's cultural or linguistic background. Such expressions can easily lead to misinterpretation by the LLM and result in irrelevant or incorrect responses. For example, a user might say, "I want a Kopi O," which in some Southeast Asian regions refers to black coffee with sugar. Without cultural grounding, the LLM may misunderstand this request and generate a response that does not match the user's intended meaning. Similarly, local expressions such as "sabo" (a slang term for blame-shifting) or "Can or not?" (meaning "Is this possible?") can confuse the model if it lacks familiarity with these phrases. Without proper understanding, the responses may become unhelpful or misaligned. To address this, we can collect a small set of representative user preference samples (see Section 4) that include localized expressions or slang (as inputs X) along with their intended interpretations (as ground truth outputs Y). These user-verified pairs help us estimate the instance-response-dependent discrepancies between the LLM's initial outputs and the user's actual preferences. These discrepancies are stored in a lightweight memory bank (see Section 3.1), which endows the LLM to learn the user's linguistic style and improve future responses. For instance, when the same user later says "Kopi O" or uses expressions like "Let's makan" (meaning "Let's eat"), the LLM can infer to the estimated discrepancy and generate the correct response, such as black coffee or interpreting the phrase as a request to eat, without requiring further clarification. Prompt-based self-reflection and self-correction alone (Paul et al., 2023; Shinn et al., 2023; Bang et al., 2023; Li et al., 2023; Zhou et al., 2023; 2022) struggle to achieve such personalized alignment, especially when rich user feedback are scarce. Moreover, even in tasks focused on output accuracy, intrinsic self-correction remains limited when models rely exclusively on their own outputs for feedback (Huang et al., 2023; Hu et al., 2024).

Even though existing LLM-based chatbots with long context windows demonstrate some memorization ability, it is often achieved through external, proprietary mechanisms and there is still a lack of persistence across sessions in API-based settings, where each query is stateless. In such cases, the context is not retained between sessions, forcing users to repeatedly provide preference information. Furthermore, small or mid-sized companies relying on third-party LLM APIs face significant challenges in offering personalized experiences to users, as they typically lack access to internal memory or user history maintained by the LLM provider. In addition, while some commercial LLMs use prior conversations for personalization, these memory systems are proprietary, non-transparent, and non-transferable. Users and developers have no direct access or control over how preferences are stored or updated, nor can they audit or export this memory to alternative providers or offline deployments. In contrast, our approach maintains a lightweight, user-specific memory of instance-response-dependent discrepancies, which can be stored locally or ported between models and platforms. This enables persistent, controllable, and transparent personalization, even in stateless or offline environments. Overall, the goal of this work is to:

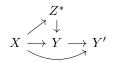
• Equip LLMs to remember and consistently follow each user's preferences, ensuring their responses remain aligned over time.

To overcome the limitations, we introduce Consistent Marginalization (CM). This method mitigates misalignment between a large-language-model (LLM) and an individual user's preferred response in a low-data regime without any full user-specific dataset fine-tuning. CM tackles the two fundamental obstacles that prevent off-the-shelf LLMs from delivering truly personalised aligned responses: (i) preference recognition, since current models often fail to detect a user's latent preferences Zhao et al. (2025), and (ii) preference retention, because even when a preference is conveyed once, the model does not remember it in later turns. We argue that both shortcomings stem from overlooking instance–response–dependent discrepancies during pre-training or the prompt. CM resolves them by (i) explicitly estimating the discrepancy between an LLM's response and the user's preferred response, and (ii) storing these discrepancies in a lightweight "personalised memory bank." During future interactions, the model consults this bank, recalls past misalignments, and

(a) Standard-Prompt-Based Approach with Z (equation 1)



(b) Instance-Response-Independent Discrepancies with Optimal Z^*



(c) Instance-Response-Dependent Discrepancies with Optimal Z^* (equation 5)

Figure 1: Contrasts standard prompt with Consistent Marginalization (CM) framework and underscores why accounting for instance–response-dependent discrepancies is necessary to bridge the gap between LLM-generated responses and user-preferred responses. In standard API-based prompt, given an input X to a Large Language Model (LLM), it is assumed that the desired output, or user-preferred responses Y, can be obtained by identifying a latent variable Z representing the prompt strategy. Consistent marginalization acknowledges that the LLM's generated responses can deviate from the user-preferred responses Y, which is denoted as Y', even for a given input X and an optimal latent variable Z^* . Our method explicitly considers these discrepancies and aims to construct a personalised memory bank of the discrepancies between Y and Y', given X and Z. We distinguish two types of response discrepancies: one of which is instance-response independent discrepancies shown in Figure 1(b), where Y' is independent of X, and other one is instance-response dependent discrepancies shown in Figure 1(c), which is a more realistic scenario. Our study focuses on the latter instance-response dependent discrepancies. Assuming that the optimal Z^* has already been determined, our primary learning objective is to estimate $p(Y' \mid Y, X)$. This probability shows the discrepancies between the user-preferred responses Y and the LLM-generated responses Y' under given X.

self-corrects—achieving strong personalization with only a small set of preference examples and no per-user fine-tuning. Our experimental results validate the effectiveness of the Consistent Marginalization (CM) method. The main contributions include:

- A general framework for personalised response alignment. We introduce CM, a method that accounts for instance-dependent discrepancies to mitigate misalignment between an LLM and an individual user's preferred response in data-constrained settings without any full, user-specific fine-tuning.
- A probabilistic formulation for unlearning misalignment. CM performs principled, amortised inference of user preferences in a low-data regime by marginalising instance-response discrepancies between the LLM and the user.
- Demonstrated effectiveness on large-scale datasets with multiple open and closed-sourced LLMS. We validate our method on multiple user preference-related large-scale datasets. The experimental results demonstrate its effectiveness in enhancing the user personalised response alignment of LLMs without fine-tuning, indicating broad applicability.

2 Problem Setting

2.1 Preliminaries

Let X denote a user query, expressed as a natural language question. The desired response, provided a priori by the user, is denoted as Y. Notably, Y is not generated by the large language model (LLM) but is instead a user-specified reference. A latent variable Z represents the prompt strategy to guide the LLM's generation process. While Z is instrumental in aligning the LLM's response with the user's expectations, it alone is insufficient to guarantee perfect alignment. The LLM-generated response, given X and the chosen Z, is represented as Y'. Discrepancies between the user desired response Y and the generated response Y' are represented and stored using a deterministic transition matrix $M_{(X)_{X',Y'}}$ (See Section 4.1).

2.2 Notation

We define a feature space $\mathcal{X} \subseteq \mathbb{R}^d$ and a label space $\mathcal{Y} = \{1, \dots, c\}$, where c is the total number of response classes. Each instance $X \in \mathcal{X}$ is associated with a true response $Y \in \mathcal{Y}$ and a generated response $Y' \in \mathcal{Y}$. Here, the user's preferred response Y is treated as the true response. In many real-world scenarios, full supervision is unavailable for the entire dataset. Instead, there is usually a small subset of cleanly labelled samples alongside a larger set of unlabeled data. More specifically, we can define $D_{\rm User}$ as the distribution of the cleanly labelled small sample set, denoted as user-preference sample, which contains pairs (X, Y, \vec{Y}) where $\vec{Y} = \mathcal{Y}$, representing a candidate label set encompassing all responses. This can be expressed as $\{(X_i,Y_i,\vec{Y})\}_{i=1}^s$, with s being the total number of clean samples. We define D_{large} as the distribution for the large unsupervised dataset, denoted as $\{X_i, \vec{Y}\}_{i=s+1}^n$, where n is the total number of both labelled and unlabeled training samples. The D_{large} is considered an unsupervised dataset, meaning neither a ground truth response nor weak supervision is associated with each instance in the distribution. The learning objective is to design a prompt strategy that leverages D_{User} , which constitutes about 5% of the total training samples, to allow large language models (LLMs) to accurately annotate the large unsupervised dataset D_{large} . The initial full candidate set \vec{Y} is pruned to a refined candidate set denoted as $C_{\text{refined}} \subseteq \mathcal{Y}$ applying the estimated M(X). The LLM's final response, selected from this refined candidate set, is the refined prediction, denoted as $\hat{Y} \in C_{\text{refined}}$.

3 Incorporating LLM-User Response Dependent Discrepancies via Marginalisation

Most recent work on prompt engineering focus on designing or searching for effective prompt schemes —e.g., chain-of-thought or tool-augmented prompts—to maximise the conditional likelihood $p(Y \mid X)$ of an LLM (Wei et al., 2022; Yao et al., 2022). The conventional approach of Hu et al. (2024), which *does not* account for personalised response misalignment, is

$$p(Y \mid X) = \sum_{Z} p(Z, Y \mid X) = \sum_{Z} p(Y \mid X, Z) p(Z \mid X),$$
 (1)

where $p(Y \mid X)$ is the likelihood of the sequence generated by the LLM, and Z indexes a family of prompts (or latent reasoning paths). Equation equation 1 corresponds to the *ideal*, personalised response misalignment-free setting in which the model's response Y' is always aligned to the user-preferred response Y. In practice, however, even an optimal prompt Z^* may be inadequate for personalisation if the LLM has not been pre-trained or fine-tuned on user-specific data. Therefore, in its unmodified form, the formulation in equation 1 is ill-suited to personalised response-alignment tasks because it ignores the response discrepancies between LLM outputs and user preferences. This paper addresses that gap.

Instance—Response Dependent Discrepancies via Marginalisation Let the latent variable Y' denote the *misaligned* response produced by the LLM for input X under prompt Z. By modelling Y' explicitly, we can learn—and later marginalise—the instance—response dependent discrepancy between Y' and the user-preferred response Y. We therefore revise the formulation as follows:

$$p(Y \mid X) = \sum_{Z} \sum_{Y'} p(Z, Y, Y' \mid X) = \sum_{Z} \sum_{Y'} p(Z \mid X) p(Y \mid X, Z) p(Y' \mid Y, X, Z)$$
 (2)

$$\stackrel{\text{(i)}}{=} \sum_{Z} \sum_{Y'} p(Z \mid X) p(Y \mid X, Z) p(Y' \mid Y, X) \tag{3}$$

$$= \sum_{Z} p(Z \mid X) p(Y \mid X, Z) \qquad \underbrace{\sum_{Y'} p(Y' \mid Y, X)}_{\text{Instance-Response}}$$
 (4)

Step (i) assumes the conditional-independence $Y' \perp \!\!\! \perp Z \mid (Y,X)$. This assumption is reasonable, as our goal is to recover an unbiased estimate of LLM misalignment, capturing how the LLM responds to a

user query without being undermined by external factors such as the specific prompting strategy. The final factor $p(Y' \mid Y, X)$ is denoted as instance–response-dependent discrepancies. Our aim is to estimate the $p(Y' \mid Y, X)$ to maximise the conditional likelihood of LLM in producing personalised responses that align with user preferences. Our formulation explicitly covers the realistic case in which the LLM's raw response Y' is misaligned from the user-preferred response Y. When those instance–response-dependent discrepancies are shown, we estimate the $p(Y' \mid Y, X)$ and utilise it to endow the LLM to align more with the user. In the hypothetical, perfectly aligned regime where Y' = Y for every input, the discrepancy distribution reduces to an identity matrix $p(Y' \mid Y, X) = \mathbf{1}_{\{Y' = Y\}}$. Under the scenario, our framework naturally reduces to equation 1. Because our learning objective is discrepancy estimation rather than prompt optimisation, we assume a suitable prompt Z^* has already been given. The joint model for the user-preferred response Y and the LLM's misaligned response Y' then factorises as

$$p(Y \mid X) = \sum_{Y'} p(Z^*, Y, Y' \mid X) = \underbrace{p(Z^* \mid X)}_{\text{Optimal prompt User-Preferred Response}} \underbrace{p(Y \mid X, Z^*)}_{\text{Instance-Response}} \underbrace{\sum_{Y'} p(Y' \mid Y, X)}_{\text{Dependent Discrepancies}} . (5)$$

To obtain the user's preferred response by searching Z^* is indeed essential but insufficient. In this paper, our goal is to estimate the term $\sum_{Y'} p(Y' \mid Y, X)$, which quantifies the discrepancies between LLM outputs and user preferences for all instances with their corresponding true labels Y by marginalizing over all possible LLM-generated responses Y'. Given that $p(Y \mid Z^*, X)$ and $p(Z^* \mid X)$ are either known or given, the task of maximizing $p(Y \mid X)$ ultimately depends on accurately estimating $\sum_{Y'} p(Y' \mid Y, X)$. The $p(Y \mid Z^*, X)$ and $p(Z^* \mid X)$ are assumed obtainable since we assume Z^* is given. $p(Y \mid Z^*, X)$ describes how likely each possible Y is, given the input X and the optimal prompt strategy Z^* . However, this distribution alone does not guarantee that the LLM will produce the ground truth response in practice. The model's generated output Y' can still deviate from Y due to inherent uncertainties or imperfections in the LLM. To address this issue, it is crucial to consider the discrepancy distribution $p(Y' \mid Y, X)$ and incorporate it into the inference process. By consistently marginalizing over all possible generated responses Y', we can more accurately model the process by which the true label Y relates to the observed LLM output Y'. This leads to a more reliable and coherent inference framework that accounts for the discrepancy between the idealized distribution $p(Y \mid Z^*, X)$ and the practical reality of the LLM's response generation. Therefore, the conditional likelihood $p(Y \mid X)$ can be maximised if $\sum_{Y'} p(Y' \mid Y, X)$ can be correctly identified.

3.1 Instance-Response-Dependent Discrepancies Between LLMs and User

This subsection bridges theory and implementation: we show how the notion of response misalignment formalised by $\sum_{Y'} p(Y' \mid Y, X)$ is realised in practice and subsequently exploited.

Definition of misalignment. For a fixed query X and ground-truth label Y, the probability $p(Y' \mid Y, X)$ which we denote as the *instance-response-dependent discrepancy*—quantifies how often the LLM produces each (possibly mis-aligned) response Y'. We instantiate the $p(Y' \mid Y, X)$ via a *deterministic* transition matrix $M(X) \in \{0,1\}^{|\mathcal{Y}| \times |\mathcal{Y}|}$ whose entry $M(X)_{k',k} = 1$ iff, at least once in the interaction history for query X, the LLM produced response Y' = k' while the ground-truth label was Y = k. Each column k therefore encodes the set of previously observed alignments (k' = k) and misalignments $(k' \neq k)$ associated with Y = k given X. During our experiments we treat M(X) as an *personalised memory bank* rather than a binary mask. Formally,

$$M_{(X)_{k',k}} = \begin{cases} 1, & \text{if there exists a user preference sample } i \text{ such that } Y_i = k \text{ and } Y_i' = k' \\ 0, & \text{otherwise.} \end{cases}$$

Ideally, only the diagonal entries of $M_{(X)}$ would be positive, indicating that the LLM's generated responses match the true responses (Y = Y'). All **off-diagonal** entries would remain zero, indicating perfect response alignment. In practice, however, discrepancies arise which represent instances where the LLM's responses deviate from the true responses in the user preference samples, resulting in **nonzero off-diagonal** elements that capture the discrepancies between true responses and the LLM-generated responses. Each **row** of the

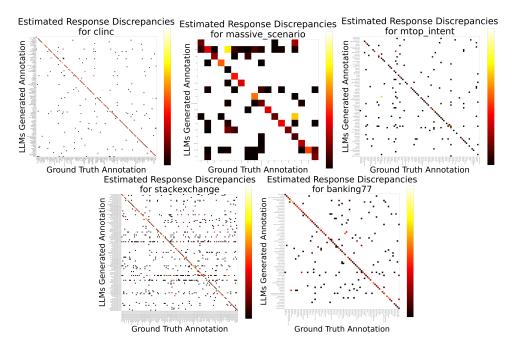


Figure 2: Estimated Instance-Response-Dependent Discrepancies on ChatGPT 3.5 Turbo for datasets StackExchange(Topic) CLINC150(Intent), Banking77(Intent), MOTE(Intent), Massive(Scenario). The diagonal entries of the matrix indicate the aligned responses from LLMs given each dataset, whereas the other highlighted entries indicate misaligned responses. The annotation also can be denoted as response.

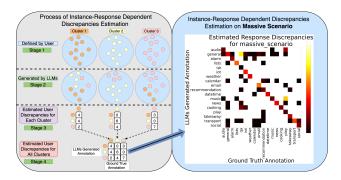


Figure 3: Semantic Depiction of Instance-Response Dependent Discrepancy Estimation. Clusters indicate instances with the same responses.

estimated matrix $M_{(X)}$ encodes the dependency between the LLM's generated responses Y' and the possible true labels Y. Specifically, $M_{(X)}$ records all past discrepancies observed for instances sharing the same true label Y. This dependency is utilized to truncate the candidate label set for each sample based on the LLM's responses. Formally, M is defined as a $K \times K$ deterministic transition matrix (where K is the number of classes) with elements $M_{k',k}$, where: For example: $M_{(X)_{1,1}} = 1$ indicates that the LLM predicted responses 1 given the true responses was 1, meaning that there are no response discrepancies. $M_{(X)_{4,1}} = 1$ indicates that the LLM predicted responses 4 given the true responses was 1, meaning that there are response discrepancies. For illustration purposes, consider the following example of the deterministic transition matrix $M_{(X)}$:

$$M_{(X)} = \begin{bmatrix} M_{1,1} & M_{1,2} & M_{1,3} & M_{1,4} \\ M_{2,1} & M_{2,2} & M_{2,3} & M_{2,4} \\ M_{3,1} & M_{3,2} & M_{3,3} & M_{3,4} \\ M_{4,1} & M_{4,2} & M_{4,3} & M_{4,4} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}.$$

$$(6)$$

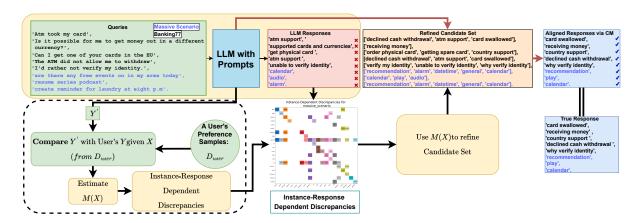


Figure 4: Overview of Consistent Marginalization on Tasks Massive Scenario and Banking 77. $D_{\text{User}} = \{(X_i, Y_i)\}_{i=1}^s$ denote a small set of user preference samples with size |s|. Each input X_i has a known ground-truth response Y_i . From these samples, we construct a deterministic transition matrix M, which captures mappings between the LLM's generated responses Y_i' and the corresponding ground-truth labels Y_i .

The *highlighted entries* denotes previously made misalignments by LLMs recorded for all instances with respect to each true responses Y. We treat each true responses as a category, thereby aggregating all possible misalignments of the instances made by LLMs associated with that category. In this deterministic transition matrix, $M_{(X)_{k',k}}$ indicates that the LLM predicted responses k' when the ground-truth responses was k for at least one observed sample. Each **row** of $M_{(X)}$ corresponds to a predicted label Y' = k', and each **column** corresponds to a ground-truth label Y = k. The entry $M_{(X)_{k',k}} = 1$ indicates that the LLM has generated the response Y' = k' when the true label was Y = k. This can be described as follows:

Condition 1: k' = k (Response Alignment). If k' = k, the LLM's prediction aligns with the true label, indicating no discrepancy:

$$M_{(X)_{k'k}} = 1$$
 (LLM's prediction matches the true label $Y = k$).

Condition 2: $k' \neq k$ (Response Discrepancies). If $k' \neq k$, the LLM has generated an incorrect response Y' = k' for instances where the true label is Y = k. This captures a discrepancy:

$$M_{(X)_{k',k}} = 1$$
 (LLM's prediction $Y' = k'$ does not match the true label $Y = k$).

By estimating the $M_{(X)}$ from user preference samples D_{User} , we record all possible past misalignments (Y') made by the LLM for instances with the corresponding true response Y. This matrix provides a structured representation of the alignment or discrepancies between the LLM's responses and user-preferred responses. Given new inputs, the deterministic transition matrix $M_{(X)}$ and the initial responses from the LLM, we can refine the prediction process as follows: By treating the initial prediction Y' as an index, $M_{(X)}$ allows us to retrieve the set of potential correct responses Y associated with Y' during the estimation phase. This enables the LLM to reconsider its prediction by selecting only from the refined candidate set, effectively recalling past misalignments. To summarise and connect the theoretical construction with our practical implementation, we add the following. The $M(X)_{k',k}$ records every aligned (k'=k) and mis-aligned $(k'\neq k)$ occurrence, we can obtain an empirical conditional distribution of misalignment and alignment via simple row normalisation: $p(Y'=k'\mid Y=k,X)=\widetilde{M}_{(X)k',k}:=\frac{M(X)_{k',k}}{\sum_{j\in\mathcal{Y}}M(X)_{j,k}}$ whenever $\sum_j M(X)_{j,k}>0$. In practice, however, our LLM is a **black-box**: its parameters, loss function, and internal soft-max layer are inaccessible. Subsequently, we cannot train the LLM using estimated $\widetilde{M}_{(X)}$.

Example: Personalizing LLM Responses to User Preferences The Figure 4 illustrates overview of CM pipeline and role of instance-response-dependent discrepancy-estimation. Each user query X_i is initially paired with an candidate set \vec{Y}_i that lists *all* potential responses. Our aim is to steer the LLM toward

responses that faithfully reflect individual user preferences across the unlabeled corpus D_{large} . Consistent Marginalisation (CM). CM first estimates instance—response-dependent discrepancies between the LLM's misaligned response Y_i' and the ground-truth preference Y_i . Because full supervision is impractical, these discrepancies are infers from a small but reliable set of annotated preference samples, storing them in a transition matrix $M_{(X)}$. This matrix acts as a lightweight personalised memory bank that records misaligned response of LLM from user's true intent. At inference time, $M_{(X)}$ is exploited to refine the original candidate set \vec{Y}_i , generating a pruned set $C_{i_{\text{Refined}}}$ that excludes potentially unwanted responses. Finally, the LLM, represented by the function G, generates a refined output \hat{Y}_i by conditioning on the input X_i and the updated candidate set $C_{i_{\text{Refined}}}$ to $\hat{Y}_i = G(X_i, C_{i_{\text{Refined}}})$.

4 Selection Criterion for User-Preference Samples

In practice, selecting a small subset of samples (hereafter referred to as "user preference samples") from a large training set is challenging. High Confidence from Human Annotators: In parallel, we select samples for which human annotators have high confidence in their preferred responses. Formally, consider an instance X and a label Y drawn from the label set \vec{Y} . A user preference sample must satisfy $p(Y \mid X, \vec{Y}) \approx 1$, indicating that the human annotator is certain of their responses. This criterion ensures that the user preference samples are as misalignment-free as possible, minimizing uncertainty and reducing the risk of propagating incorrect user preferences into the learning process. Since our setting assumes the availability of a small set of user-preferred responses, we do not conduct an extensive feasibility study on the selection process. Instead, we adopt this selection criterion as a working assumption to approximate reliability, acknowledging that user-provided preference samples may still contain noise. Nevertheless, we treat these samples as relatively trustworthy compared to LLM generated responses, particularly when they originate from human annotators $Section \ 4$ shows that instance-response-dependent discrepancies are essential for aligning LLM response with user preference. We now describe how to estimate $\sum_{Y'} p(Y' \mid Y, X, \vec{Y})$ and specify the assumption of user-preference samples for the estimation under which alignment can be achieved without per-user fine-tuning. Because the candidate set \vec{Y} is deterministic in our setting, it appears explicitly in the conditional notation to ensure the estimation procedure is clear.

Definition 1 (LLM misaligned Response). Let G denote the LLM. For a query X and candidate set \vec{Y} ,

$$p(Y' \mid X, \vec{Y}) = G(X, \vec{Y}), \tag{7}$$

where Y' may differ from the user-preferred response Y.

Proposition 1. Because every model output Y' is paired with (possibly latent) Y, we have

$$\underbrace{p(Y' \mid X, \vec{Y})}_{\text{LLM-Generated Response}} = \underbrace{\sum_{Y} p(Y' \mid Y, X, \vec{Y})}_{\text{User-Preferred Response}} .$$
(8)

Assumption 1 (High-Confidence User Preference Samples). There exists a finite set

$$\mathcal{D}_{\text{User}} = \{(X_i, Y_i)\}_{i=1}^s,$$

for which $Pr(Y = Y_i \mid X_i, \vec{Y}) = 1$ for all i.

Corollary 1 (Discrepancy Estimation). Under Assumption 1, pairing each ground-truth Y_i with its model output Y'_i enables estimation of $p(Y' | Y, X, \vec{Y})$.

Example 1. If Y = 1 is known for X_1 with certainty $(p(Y = 1 \mid X_1, \vec{Y}) = 1)$, then

$$\underbrace{p(Y'=2\mid X_1,\vec{Y})}_{\text{LLM-Generated Response (1)}} = \underbrace{\sum_{Y} p(Y'=2\mid Y=1,X_1,\vec{Y})}_{Y} \underbrace{p(Y=1\mid X_1,\vec{Y})}_{\text{User-Preferred Response (2)}}.$$
(9)
$$\underbrace{\sum_{Y} p(Y'=2\mid Y=1,X_1,\vec{Y})}_{\text{Dependent Discrepancies (3)}} \underbrace{p(Y=1\mid X_1,\vec{Y})}_{\text{User-Preferred Response (2)}}.$$

With an accurate estimate of $\sum_{Y'} p(Y' \mid Y, X)$, the conditional likelihood $p(Y \mid X)$ can be maximised without full per-user fine-tuning.

Metric	ChatGPT-3.5		ChatGPT-3.5	ChatGPT-3.5	ChatGPT-3.5
Dataset	StackExchange(Topic)		Banking77(Intent)	MOTE(Intent)	Massive(Scenario)
CotWei et al. (2022)	$49.82\% \pm 0.19\%$		$19.16\% \pm 0.14\%$	$57.42\% \pm 0.40\%$	$60.54\% \pm 0.24\%$
CM _{3.5} + Cot	$\mathbf{54.72\%} \pm \mathbf{0.17\%}$		$\mathbf{31.90\%} \pm \mathbf{0.30\%}$	$\mathbf{64.91\%} \pm \mathbf{0.36\%}$	$\mathbf{68.11\% \pm 0.43\%}$
FoTBrown et al. (2020)	$46.04\% \pm 0.01\%$		$36.77\% \pm 0.44\%$	$55.93\% \pm 0.23\%$	$58.23\% \pm 0.45\%$
CM _{3.5} + FoT	$\mathbf{51.92\% \pm 0.08\%}$		$45.94\% \pm 0.60\%$	$63.94\% \pm 1.15\%$	$\mathbf{66.70\%} \pm \mathbf{0.86\%}$
Zero-Shot CM _{3.5} +Zero-Shot	$51.96\% \pm 0.02\%$ $\mathbf{56.29\% \pm 0.04\%}$		$62.55\% \pm 0.85\%$ $\mathbf{66.92\% \pm 1.10\%}$	$65.84\% \pm 0.47\%$ $\mathbf{74.36\% \pm 0.73\%}$	$62.22\% \pm 0.05\%$ $\mathbf{67.26\%} \pm \mathbf{0.12\%}$
Self-ConsistencyWang et al. (2022) CM _{3.5} +Consistent	$51.75\% \pm 0.06\%$ $\mathbf{53.96\%} \pm \mathbf{0.08\%}$		$56.61\% \pm 0.34\%$ $\mathbf{57.42\% \pm 0.44\%}$	$68.26\% \pm 0.26\%$ $75.57\% \pm 0.77\%$	$62.49\% \pm 0.19\%$ $64.63\% \pm 0.12\%$
Self-RefineMadaan et al. (2024) CM _{3.5} +Self-Refine	$48.94\% \pm 0.68\%$ $54.09\% \pm 0.04\%$		$53.90\% \pm 2.94\%$ $57.87\% \pm 3.37\%$	$\mathbf{71.88\%} \pm 0.59\% \\ 68.05\% \pm 0.29\%$	$63.55\% \pm 0.02\%$ $68.27\% \pm 0.40\%$
Metric	Llama-8B Instruct	Llama-8B Instruct	Llama-8B Instruct	Llama-8B Instruct	Llama-8B Instruct
Dataset	StackExchange(Topic)	CLINC150(Intent)	Banking77(Intent)	MOTE(Intent)	Massive(Scenario)
CotWei et al. (2022) $CM_{Llama}+Cot$	$14.72\% \pm 0.19\% $ $23.22\% \pm 0.02\%$	$32.24\% \pm 0.55\%$ $\mathbf{33.08\% \pm 0.24\%}$	$22.20\% \pm 0.45\%$ $\mathbf{24.62\% \pm 0.19\%}$	$55.75\% \pm 0.21\%$ $\mathbf{56.89\% \pm 0.16\%}$	$46.94\% \pm 0.10\%$ $\mathbf{50.27\% \pm 0.24\%}$
FoT Brown et al. (2020) $\mathbf{CM}_{Llama} + \mathbf{FoT}$	$14.61\% \pm 1.47\%$ $26.56\% \pm 0.20\%$	$42.84\% \pm 1.06\%$ $43.84\% \pm 0.25\%$	$25.07\% \pm 0.78\%$ $\mathbf{29.00\% \pm 0.35\%}$	$66.87\% \pm 0.84\% \\ 65.50\% \pm 0.93\%$	$54.91\% \pm 1.38\%$ $\mathbf{56.49\% \pm 0.95\%}$
Zero-Shot CM_{Llama} +Zero-Shot	$17.80\% \pm 0.19\%$	$58.24\% \pm 0.69\%$	$49.03\% \pm 0.13\%$	$41.09\% \pm 1.42\%$	$55.82\% \pm 0.19\%$
	$\mathbf{22.66\%} \pm \mathbf{0.09\%}$	$\mathbf{59.78\%} \pm \mathbf{0.67\%}$	$\mathbf{55.19\% \pm 0.45\%}$	$\mathbf{50.91\% \pm 1.77\%}$	$\mathbf{63.95\%} \pm \mathbf{0.57\%}$
Consistent Wang et al. (2022)	$19.32\% \pm 0.12\% $ $24.76\% \pm 0.07\%$	$55.36\% \pm 0.11\%$	$38.31\% \pm 0.26\%$	$63.43\% \pm 0.55\%$	$57.53\% \pm 1.09\%$
CM _{Llama} +Consistent		$\mathbf{55.42\% \pm 0.31\%}$	$43.34\% \pm 0.35\%$	$\mathbf{65.98\% \pm 0.32\%}$	$\mathbf{59.95\%} \pm \mathbf{0.62\%}$
Self-Refine Madaan et al. (2024) $CM_{Llama}+Self-Refine$	$18.9\% \pm 0.14\%$	$60.19\% \pm 0.98$	$48.70 \pm 0.28\%$	$42.64\% \pm 1.05\%$	$55.75\% \pm 0.19\%$
	$23.34\% \pm 0.48\%$	$\mathbf{61.42\% \pm 1.23\%}$	$\mathbf{55.23\%} \pm \mathbf{0.32\%}$	$\mathbf{51.41\%} \pm \mathbf{0.93\%}$	$\mathbf{63.85\%} \pm \mathbf{0.52\%}$
Metric		ChatGPT-4-o-mini	ChatGPT-4-o-mini	ChatGPT-4-o-mini	ChatGPT-4-o-mini
Dataset S		CLINC150(Intent)	Banking77(Intent)	MOTE(Intent)	Massive(Scenario)
Cot Wei et al. (2022) CM _{3.5} +Cot	$44.72\% \pm 0.19\%$ $49.54\% \pm 0.31\%$	$74.55\% \pm 2.73\%$ $75.76\% \pm 3.22\%$	$59.41\% \pm 0.50\%$ $\mathbf{65.32\% \pm 1.73\%}$	$69.70\% \pm 1.07\% 69.25\% \pm 1.32\%$	$63.99\% \pm 0.69\%$ $\mathbf{66.40\% \pm 0.38\%}$
FoT Brown et al. (2020)	$42.81\% \pm 0.40\%$	$73.14\% \pm 2.33\%$	$55.87\% \pm 0.10\%$	$66.23\% \pm 0.81\%$	$67.49\% \pm 0.12\%$
CM _{3.5} +FoT	$\mathbf{48.09\%} \pm \mathbf{0.35\%}$	$74.60\% \pm 2.48\%$	$\mathbf{62.74\%} \pm \mathbf{0.89\%}$	$\mathbf{67.60\%} \pm \mathbf{0.94\%}$	$\mathbf{70.03\% \pm 0.19\%}$
Zero-Shot CM _{3.5} +Zero-Shot	$49.94\% \pm 0.36\% 50.02\% \pm 0.25\%$	$83.23\% \pm 1.11\%$ $82.70\% \pm 1.56\%$	$66.61\% \pm 1.82\%$ $\mathbf{69.45\% \pm 2.30\%}$	$73.79\% \pm 0.61\%$ $73.72\% \pm 0.94\%$	$72.04\% \pm 0.07\%$ $71.03\% \pm 0.07\%$
Consistent Wang et al. (2022)	$47.63\% \pm 0.37\% 48.19\% \pm 0.27\%$	$81.85\% \pm 0.63\%$	$66.08\% \pm 1.38\%$	$74.00\% \pm 0.32\%$	$70.82\% \pm 0.02\%$
CM _{3.5} +Consistent		$79.86\% \pm 1.53\%$	$65.86\% \pm 1.30\%$	$\mathbf{79.82\% \pm 0.90\%}$	$69.81\% \pm 0.40\%$
Self-RefineMadaan et al. (2024)	$51.72\% \pm 0.27\%$	$79.34\% \pm 0.49\%$	$64.81\% \pm 1.33\%$	$71.93\% \pm 0.02\%$ $71.06\% \pm 0.60\%$	$71.35\% \pm 0.29\%$
CM _{3.5} +Self-Refine	$51.69\% \pm 0.24\%$	$80.21\% \pm 1.37\%$	$68.71\% \pm 2.68\%$		$71.72\% \pm 0.38\%$

Table 1: Response–matching accuracy (% \pm STD) of several prompt methods evaluated on five domain-specific NLP datasets with three LLM back-bones: ChatGPT-3.5-Turbo, ChatGPT-4-o-mini, and Llama-8B-Instruct. For each dataset, the best score obtained by pairing our Consistent Marginalization (CM) module with standard prompt techniques is shown in **bold**. We report Few-Shot, Self-Consistency, Chain-of-Thought(CoT), Self-Refine, and CM variants. Note: $CM_{3.5}$ is learned from ChatGPT-3.5-Turbo and then applied to both ChatGPT-3.5-Turbo and ChatGPT-4-o-mini, whereas CM_{Llama} is learned and used solely on Llama-8B. The weaker gains on Chatgpt-4-o-mini highlight that an instance–response discrepancy matrix transfers poorly across model families. In contrast, it delivers substantial improvements when applied to the model on which it was estimated.

5 Experiment

5.1 Evaluation Setup

To assess the effectiveness and generalisability of Consistent Marginalization (CM), we conduct experiments on three widely used LLMs—Chatgpt-4o-mini, Chatgpt-3.5, and Llama-8b-Instruct—each run with two random seeds for robustness. CM is benchmarked against standard prompt and recent self-correction baselines on five diverse, real-world datasets: StackExchange: a multi-domain QA corpus (e.g., programming) that tests how well an LLM aligns responses in varied, user-specific contexts. CLINC150: 150 intent categories drawn from realistic dialogue, measuring an LLM's ability to capture subtle user preferences in high-variance settings. BANK77: banking-themed user queries that probe alignment performance in high-stakes, user-sensitive scenarios. MOTE: a multilingual dataset for evaluating CM's cross-lingual adaptability. Massive Scenario: 51 typologically-diverse multilingual natural language understanding dataset, highlighting CM's scalability to broad situations and linguistic coverage. For each

Metric	StackExchange	CLINC150	Banking77	Mtop	Massive
	(Topic)	(Intent)	(Intent)	(Intent)	(Scenario)
Cot Wei et al. (2022) $CM_{Llama}(1\%) + \mathbf{Cot}$	$14.49\% \pm 0.19\%$ $\mathbf{19.85\% \pm 0.02\%}$	$32.33\% \pm 0.38\%$ $32.18\% \pm 0.04\%$	$\begin{array}{c} 22.44\% \pm 0.10\% \\ 22.14\% \pm 0.06\% \end{array}$	$55.95\% \pm 0.23\%$ $57.32\% \pm 0.14\%$	$47.31\% \pm 0.03\%$ $50.34\% \pm 0.24\%$
FoT Brown et al. (2020) $CM_{Llama}(1\%)$	$14.73\% \pm 1.54\%$ $22.52\% \pm 0.38\%$	$43.02\% \pm 1.38\%$ $42.84\% \pm 0.84\%$	$25.45\% \pm 0.45\% 25.45\% \pm 0.39\%$	$65.50\% \pm 0.57\%$ $67.28\% \pm 0.43\%$	$53.30\% \pm 0.03\%$ $56.25\% \pm 0.17\%$
Zero-Shot $CM_{Llama}(1\%)$ +Zero-Shot	$18.46\% \pm 0.07\%$	$58.04\% \pm 0.40\%$	$48.70\% \pm 0.45\%$	$40.08\% \pm 0.05\%$	$55.41\% \pm 0.27\%$
	$22.47\% \pm 0.10\%$	$58.22\% \pm 0.22\%$	$48.38\% \pm 0.52\%$	$\mathbf{51.12\% \pm 0.23\%}$	$62.14\% \pm 0.34\%$
Consistent Wang et al. (2022) $CM_{Llama}(1\%)$ +Consistent	$19.42\% \pm 0.02\%$	$55.53\% \pm 0.02\%$	$38.05\% \pm 0.19\%$	$62.75\% \pm 0.41\%$	$56.96\% \pm 0.13\%$
	$\mathbf{23.75\% \pm 0.31\%}$	$54.40\% \pm 0.04\%$	$37.92\% \pm 0.26\%$	$\mathbf{66.19\% \pm 0.52\%}$	$59.92\% \pm 0.20\%$
Self-Refine Madaan et al. (2024) $CM_{Llama}(1\%) + $ Self-Refine	$18.94\% \pm 0.07\%$	$58.47\% \pm 0.38\%$	$48.38\% \pm 0.45\%$	$41.36\% \pm 0.14\%$	$55.35\% \pm 0.34\%$
	$\mathbf{22.71\%} \pm \mathbf{0.05\%}$	$58.27\% \pm 0.22\%$	$48.21\% \pm 0.55\%$	$51.03\% \pm 0.05\%$	$\mathbf{62.10\%} \pm \mathbf{0.30\%}$

Table 2: Response–matching accuracy (% \pm STD) of several prompt methods evaluated on five domain-specific NLP datasets with Llama-8B-Instruct. For each method (row), the best score across datasets is shown in **bold**. *Note:* $CM_{Llama}(1\%)$ is estimated with 1% of the training sample and used solely on Llama-8B.

Table 3: Response Alignment Accuracy improvement (%) of Consistent Marginalization (CM) over baseline prompt methods across datasets.

Model + Method	StackExchange	CLINC150	Banking77	MOTE	Massive (Intent)
ChatGPT-3.5 CM _{3.5} +Cot CM _{3.5} +FoT CM _{3.5} +Zero-Shot CM _{3.5} +Consistent CM _{3.5} +Self-Refine	$egin{array}{c} +4.90\% \ +5.88\% \ +4.33\% \ +2.21\% \ +5.15\% \end{array}$	+3.47% +1.91% +4.66% +0.46% +3.66%	+12.74% +9.17% +4.37% +0.81% +3.97%	+7.49% +8.01% +8.52% +7.31% -3.83%	+7.57% +8.47% +5.04% +2.14% +4.72%
	+8.50% $+11.95%$ $+4.86%$ $+5.44%$ $+4.44%$	+0.84% +1.00% +1.54% +0.06% +1.23%	+2.42% $+3.93%$ $+6.16%$ $+5.03%$ $+6.53%$	+1.14% -1.37% +9.82% +2.55% +8.77%	+3.33% $+1.58%$ $+8.13%$ $+2.42%$ $+8.10%$
ChatGPT-4o-mini CM3.5 +Cot CM3.5 +FoT CM3.5 +FoT CM3.5 +Zero-Shot CM3.5 +Consistent CM3.5 +Self-Refine	+4.82% +5.28% +0.08% +0.56% -0.03%	+1.21% +1.46% -0.53% -1.99% +0.87%	+5.91% +6.87% +2.84% -0.22% +3.90%	-0.45% +1.37% -0.07% + 5.82% -0.87%	$^{+2.41\%}_{+2.54\%}_{-1.01\%}_{-1.01\%}_{+0.37\%}$

LLM, we compare every baseline prompt method with its CM-enhanced counterpart under identical conditions that is, $Baseline\ Prompt$ versus CM + $Baseline\ Prompt$ and report results averaged over the two seeds.

5.2 Baselines

Table 4: Comparison between Prompt-Based Methods and Consistent Marginalization (CM) on Personalized Response Alignment Task

Method	Objective	Correction Mechanism	Personalised Alignment Ability	Memory of Past Misalign- ment	External Tool	Limitations on Personalised Response Alignment Task
Few-Shot Brown et al. (2020)	General task performance	None	✗ Low	X Implicit via reason- ing paths	No	Cannot adapt to user-specific preferences or feedback
Chain of Thought (Wei et al., 2022)	Improve reasoning accuracy	Implicit via reasoning path	✗ Low	✗ None	No	No adaptation to feedback; prone to hallucinations
Self-Consistency (Wang et al., 2023)	Improve response accuracy	Majority voting over responses	✗ Low	✗ None	No	Relies on diverse paths; No user-specific guidance
Self-Refine (Madaan et al., 2024)	Iterative self-correction with Feedback	Self-generated revision loop	Medium	✗ None	Yes	Requires Many Iterative rounds of Correction. Lack of long-term Memory
Consistent Marginalization (Ours)	Personalized response alignment	Explicit memory of instance- response dependent discrepan- cies	√High	✓ Yes	No	No need for per-user Fine-tune; scalable and adaptive to personalised user pref- erences

Self-Consistency Wang et al. (2023) aims to improve the response accuracy of LLMs by considering consistently generated answers through selecting multiple and diverse paths in a few-shot chain of thought

approach. The problem with this method is its dependence on multiple sources of paths from the same model; even slight changes in one source's responses can drastically impact the final responses. In addition, self-consistency only reflects the proportions of the dataset used for training the LLMS, but not the personal response preference of the user. The chain of thought method Wei et al. (2022) is a step-by-step illustration for the given query to the LLMs. Few-Shot Thought Prompting: Brown et al. (2020) uses a few relevant examples as illustrations in the prompt to aid the model in aligning the response with the user. We have also included Self-Refine Madaan et al. (2024) to show that relying on model reflection is inadequate to make a model produce persistent alignment.

5.3 Experimental Result

5.3.1 Moderate Gains with Just 5 % User-Preference Samples

Consistent Marginalization (CM) is both effective and adaptable. As Table 3 shows, adding CM to every plain-prompt baseline raises response-matching accuracy across all datasets on Chatgpt-3.5 and Llama-8b-Instruct, and delivers notable gains on Chatgpt-4o-mini. ChatGPT-3.5-Turbo. CM improves every prompt strategy on four of the five datasets; the single dip occurs with CM+Self-Refine on MOTE. The largest boost is +12.74 % on BANKING77 with CM+CoT, while the other datasets record balanced gains of +3-8%. Llama-8B-Instruct. CM produces the strongest overall gains: 23 of 25 cases improve, 16 by at least 2%. The highest is +11.95 % on STACKEXCHANGE with CM+FoT; the single drop is a mild -1.37% on MOTE with CM +FoT. ChatGPT-4o-mini. Because the discrepancy matrix was learned on GPT-3.5-Turbo, gains transfer slightly less, yet CM still adds +6.87 % on BANKING 77 with CM+FoT and remains positive or neutral on most other cells. Overall, with just 5% of user-preference samples, CM consistently outperforms every plain-prompt baseline, confirming its practical value across prompts, datasets, and LLM architectures.

5.3.2 Robust Gains with Just 1% User-Preference Samples

To quantify how many annotated preferences CM needs, we perform an ablation using **Llama-8b-Instruct** and two annotation budgets 1% and 5% of the training set—across all five datasets (Table 2). **Robust gains with only 1** %. Even at the 1 % budget, CM lifts nearly every prompt baseline. The largest improvement occurs on STACKEXCHANGE, where CM raises FoT from 14.73 % to 22.52 % (+7.79 pp) and Consistent from 19.42 % to 23.75 % (+4.33 pp). These results show that CM is effective in low-data settings. Overall, CM scales smoothly with additional data while remaining highly effective in resource-constrained regimes.

Additional LLM: ChatGPT-4 Turbo. To test the cross-model consistency of CM, we transfer the instance–response discrepancies estimated on ChatGPT-3.5-Turbo to ChatGPT-4 Turbo. As Table 5 shows, this transfer still lifts the $Zero-Shot\ Prompt$ baseline by 3.5 % in response alignment ratio, showing that $CM_{3.5}$ remains useful even on a stronger backbone.

However, the absolute gain is smaller than on ChatGPT-3.5-Turbo. We attribute the drop to model architecture and parameter difference: the larger the gap between the source model (where the discrepancies were learned) and the target model, the less precisely those discrepancies characterise the new model's misalignment. This observation indicates that the effectiveness of a instance response dependent discrepancy decays as the underlying LLM family shift farther from the one on which it was estimated.

Method	Ratio (%)
Zero-Shot (GPT-3.5)	62.99
CM _{3.5} +Zero-Shot	67.35
Zero-Shot (GPT-4 Turbo)	61.98
CM _{3.5} +Zero-Shot	64.48

Table 5: Cross-LLMs Consistency of CM

6 Related Works

6.1 Prompt-based learning

Prompt-based learning, first popularised by Brown et al. (2020), shows that a handful of in-context examples can nudge an LLM toward more accurate responses. Subsequent prompt-engineering methods—instruction

tuning (Wei et al., 2021), chain-of-thought (Cot) prompt (Wei et al., 2022), and ReAct (Yao et al., 2022)—inject explicit task structure or external tool calls to improve reasoning further. Active Prompt (Diao et al., 2023), Generate-Knowledge Prompting (Liu et al., 2023), and Consistency Prompting (Wang et al., 2023) curate clarifying questions, external facts, or multi-path consensus so that the final answer is more consistent and accurate. A parallel line of research explores self-correction: Self-Refine (Madaan et al., 2024) and Tree-of-Thought (Tot) (Yao et al., 2024; Long, 2023) allow the model to iteratively critique and revise its own outputs. Reflexion (Shinn et al., 2023) introduces external tools to validate self-generated feedback and maximise accuracy, but obtaining tools that can assess personalised response alignment at scale remains challenging. Moreover, Huang et al. (2023) shows that self-generated feedback can actually reduce quality when no external check is available, making previous methods less effective for personalised response alignment. However, these methods still fall short on two fronts that are central to personalised response alignment: (i) they do not tackle fine-grained preference recognition at the instance level, and (ii) they lack a memorisation mechanism that would let the LLM remember and reuse past preference signals over time. Our work addresses both gaps.

6.2 User Instance-Response-Dependent Discrepancies Estimation

Several related works Yang et al. (2022); Han et al. (2018); Patrini et al. (2017) leverage instance-independent transition matrices to achieve consistent classifiers. These transition matrices, which resemble response instance-independent discrepancies. However, such methods generally rely on a **white-box setting**, where model parameters are directly accessible. This accessibility enables the estimation of transition matrices in *probabilistic forms* rather than discrete forms. Despite their effectiveness in white-box scenarios, these approaches have not addressed the accurate estimation of instance-response dependent discrepancies, which capture finer-grained relationships between model outputs and user preferences. Addressing this gap is essential for enabling robust, personalized response alignment in real-world applications, particularly when working with sourced **black-box models** such as open and close-sourced large language models (LLMs).

7 Conclusion

We have introduced Consistent Marginalization (CM), a paradigm that enables large language models to deliver personalised responses by explicitly modelling instance–response–dependent discrepancies. CM's learning objective stores each misalignment between the model's draft and the user-preferred answer, then recalls this memory to "unlearn" past errors and adapt future outputs. With only a small set of annotated preference examples and no per-user fine-tuning, CM identify and corrects these discrepancies, steadily steering the LLM toward the user's desired response. Experiments across multiple LLM backbones and five diverse, large-scale datasets show consistent gains in response alignment, confirming CM's practicality and robustness in data-constrained settings.

Broader Impact Statement

To the best of our knowledge, our research does not introduce any negative societal or ethical consequences.

References

- Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, et al. A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023, 2023.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
- Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong Zhang. Active prompting with chain-of-thought for large language models, 2023.
- Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Ivor Tsang, Ya Zhang, and Masashi Sugiyama. Masking: A new perspective of noisy supervision. *Advances in neural information processing systems*, 31, 2018.
- Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio, and Nikolay Malkin. Amortizing intractable inference in large language models. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=Ouj6p4ca60.
- Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and Denny Zhou. Large language models cannot self-correct reasoning yet. In *The Twelfth International Conference on Learning Representations*, 2023.
- Zekun Li, Baolin Peng, Pengcheng He, Michel Galley, Jianfeng Gao, and Xifeng Yan. Guiding large language models via directional stimulus prompting. arXiv preprint arXiv:2302.11520, 2023.
- Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training and downstream tasks for graph neural networks. In *Proceedings of the ACM Web Conference 2023*, 2023.
- Jieyi Long. Large language model guided tree-of-thought. arXiv preprint arXiv:2305.08291, 2023.
- Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. *Advances in Neural Information Processing Systems*, 36, 2024.
- OpenAI. Gpt-4 technical report, 2023.
- Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making deep neural networks robust to label noise: A loss correction approach. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1944–1952, 2017.
- Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West, and Boi Faltings. Refiner: Reasoning feedback on intermediate representations. arXiv preprint arXiv:2304.01904, 2023.
- Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. *Advances in Neural Information Processing Systems*, 36: 8634–8652, 2023.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

- Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.
- Xuezhi Wang, Jason Wei, Dale Schuurmans, and Quoc V Le. H. chi, sharan narang, aakanksha chowdhery, and denny zhou. self-consistency improves chain of thought reasoning in language models. In *The Eleventh International Conference on Learning Representations*, volume 1, 2023.
- Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652, 2021.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in Neural Information Processing Systems*, 35:24824–24837, 2022.
- Shujin Wu, May Fung, Cheng Qian, Jeonghwan Kim, Dilek Hakkani-Tur, and Heng Ji. Aligning llms with individual preferences via interaction. arXiv preprint arXiv:2410.03642, 2024.
- Shuo Yang, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, and Tongliang Liu. Estimating instance-dependent bayes-label transition matrix using a deep neural network. In *International Conference on Machine Learning*, pp. 25302–25312. PMLR, 2022.
- Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.
- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Advances in Neural Information Processing Systems*, 36, 2024.
- Siyan Zhao, Mingyi Hong, Yang Liu, Devamanyu Hazarika, and Kaixiang Lin. Do LLMs recognize your preferences? evaluating personalized preference following in LLMs. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=QWunLKbBGF.
- Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song, Mingjie Zhan, et al. Solving challenging math word problems using gpt-4 code interpreter with code-based self-verification. In *The Twelfth International Conference on Learning Representations*, 2023.
- Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint arXiv:2211.01910, 2022.

8 Appendix

Table of Notations

Table 6: Summary of Notations Used in the Paper

Symbol	Description
X	An input instance or user query.
Y	The ground-truth response, representing the user's preference.
Y'	The initial response generated by the LLM, prior to refinement.
\hat{Y}	The final, refined response generated by the LLM using the correction method.
$ec{Y}$	The initial set of candidate responses, typically containing all classes in \mathcal{Y} .
$C_{ m refined}$	The refined candidate set, pruned from \vec{Y} using the discrepancy model.
Z	A prompting strategy, treated as a latent variable.
Z^*	The optimal or a fixed prompting strategy.
$p(Y \mid X, Z)$	The probability of generating the true response Y given X and prompt Z .
$p(Y' \mid Y, X)$	The instance-response dependent discrepancy distribution.
M(X)	The discrepancy transition matrix that models the LLM's error patterns for instance X .
D_{User}	The dataset of user-preference samples with ground-truth labels.
D_{Large}	The large-scale, unlabeled dataset.
s	The number of samples in D_{User} .
n	The total number of training samples $(D_{\text{User}} + D_{\text{Large}})$.
c, K	The total number of classes in the label space \mathcal{Y} .
G	The Large Language Model (LLM) used as the generator function.

8.1 Example:Instance-Response Dependent Discrepancy Estimation

Let $D_{\mathrm{User}} = \{(X_i, Y_i)\}_{i=1}^s$ denote a small set of user preference samples, where s=4. Each input X_i has a known ground-truth label Y_i . From these samples, we construct a deterministic transition matrix M, which captures mappings between the LLM's generated responses Y_i' and the corresponding ground-truth labels Y_i . We also define the unlabeled dataset as $D_{\mathrm{large}} = \{X_i\}_{i=1}^N$, with N=s=4 in this illustrative example. Let $\vec{X} = \{X_1, X_2, X_3, X_4\}$ be the set of input queries, and let $\vec{Y}_{\mathrm{Query}} = \{\vec{Y}_1, \vec{Y}_2, \vec{Y}_3, \vec{Y}_4\}$ denote the initial candidate sets for each query. Assuming a known label space of size K, each \vec{Y}_i is initialized to the same universal candidate set $\vec{Y} \in \{0,1\}^K$, where all entries are initially set to one—i.e., every class is a potential candidate. We define $Y_{\mathrm{True}} = \{Y_1, Y_2, Y_3, Y_4\}$ as the set of one-hot encoded vectors representing ground-truth responses. Using this setup, the personalised memory bank M(X) is estimated from D_{User} and subsequently used to refine the prediction space for the LLM during inference, producing a final output $\hat{Y}_i = G(X_i, C_{i_{\mathrm{Refined}}})$.

In the right-hand-side matrix, the estimated $M_{(X)}$ represents the potential user-preferred response $\vec{Y}_{i_{\text{Updated}}}$ for \vec{X}_i corresponding to different LLM-generated responses. \vec{Y}_G denotes the ground truth responses with respect to X. If the LLM generates response Y'=k, then $\vec{Y}_{i_{\text{Updated}}}$ will be the k-th row of the matrix $M_{(X)}^{Y_1}$. This rule applies to all LLM-generated responses and significantly reduces the candidate set of responses from [1,1,1,1] to a one-hot vector (e.g., [1,0,0,0] if k=1).

Inference

During inference, the goal is to leverage the learned discrepancy matrix M(X) to guide the LLM's predictions on the unlabeled dataset D_{Large} . For each unannotated instance X_i , the initial candidate set \vec{Y} is pruned using the model's learned error patterns to create a **refined candidate set**, $C_{i,\text{refined}}$. The LLM, denoted as G, then takes the instance X_i and this constrained set $C_{i,\text{refined}}$ as input to produce the final, **refined prediction** \hat{Y}_i :

$$\hat{Y}_i = G(X_i, C_{i\text{Refined}})$$

The objective is to ensure that this final prediction \hat{Y}_i accurately matches the true response Y_i .

8.2 Comprehensive comparison table showing the performance differences between 1% and 5% user-preference samples across all methods and datasets

Dataset	Method	1% Acc	5% Acc	Improvements
	Cot	14.49	14.72	+0.23
	CM+Cot	19.85	23.22	+3.37
StackExchange	FoT	14.73	14.61	-0.12
StackExchange	CM+FoT	22.52	26.56	+4.04
	Consistent	19.42	19.32	-0.10
	CM+Consistent	23.75	24.76	+1.01
	Cot	32.33	32.24	-0.09
	CM+Cot	32.18	33.08	+0.90
CLINC150	Zero-Shot	58.04	58.24	+0.20
CLINCISO	CM+Zero-Shot	58.22	59.78	+1.56
	Self-Refine	58.47	60.19	+1.72
	CM+Self-Refine	58.27	61.42	+3.15
	Cot	22.44	22.20	-0.24
	CM+Cot	22.14	24.62	+2.48
Banking77	FoT	25.45	25.07	-0.38
Danking / /	CM+FoT	25.45	29.00	+3.55
	Zero-Shot	48.70	49.03	+0.33
	CM+Zero-Shot	48.38	55.19	+6.81
	CM+Self-Refine	48.21	55.23	+7.02
	Cot	55.95	55.75	-0.20
	CM+Cot	57.32	56.89	-0.43
Mtop	FoT	65.50	66.87	+1.37
мюр	CM+FoT	67.28	65.50	-1.78
	Consistent	62.75	63.43	+0.68
	CM+Consistent	66.19	65.98	-0.21
	Cot	47.31	46.94	-0.37
	CM+Cot	50.34	50.27	-0.07
Massive	FoT	53.30	54.91	+1.61
	CM+FoT	56.25	56.49	+0.24
	Zero-Shot	55.41	55.82	+0.41
	CM+Zero-Shot	62.14	63.95	+1.81
	CM+Self-Refine	62.10	63.85	+1.75

Table 7: Accuracy comparison between 1% and 5% user-preference samples. Bold indicates improvements >1%.